Engineering Management

Chin-Sheng Chen, Professor and Program Director
Seon Ki Kim, Assistant Professor
Shih-Ming Lee, Associate Professor
Karen E. Schmahl, Associate Professor

Affiliated and Research Faculty
Robert Hacker, Adjunct Professor
Alvaro Carreras, Adjunct Professor

Master of Science in Engineering Management

The Master of Science in Engineering Management (MSEM) program develops future leaders of business and industry in an engineering and technological environment. The program blends a carefully chosen mix of graduate courses offered by the College of Engineering and Computing, the College of Business Administration, and the College of Law. The MSEM program is designed to offer a tailored degree for those engineers who would like to advance to managerial positions and wish to acquire the necessary knowledge and skills for success. The MSEM program includes coursework that simulates a business environment where students learn and apply engineering tools, managerial theories, and best practices to design and operate industrial systems. Students in the program are expected to acquire contemporary engineering management theories and techniques, and simultaneously build a solid technical foundation in a chosen engineering track.

Admission Policies

The applicant to the MSEM program must have a bachelor’s degree in engineering or a closely related field from a regionally accredited institution with a minimum of “B” average in upper-level undergraduate work, or a graduate degree from an accredited institution. In addition, international graduate student applicants whose native language is not English are required to submit a score for the Test of English as a Foreign Language (TOEFL) or for the International English Language Testing System (IELTS). A total score of 80 on the iBT TOEFL or 6.5 overall on the IELTS is required. The applicant whose GPA does not meet the minimum GPA requirement may be considered for conditional admission. For such consideration, the applicant must submit (1) three letters of recommendation; (2) a resume including education, training, and employment history, practical and research experience (such as projects and publications), skills and other pertinent information; and (3) a statement of objective in which the applicant must clearly state his/her intended engineering track, in addition to other information.

Degree Requirements

The MSEM program requires 30 credit hours of course work including 9 credit hours of engineering management core courses, 9 credit hours of business electives and 12 credit hours of approved graduate-level electives from an engineering track.

Engineering Management Core Courses

Students in the Engineering Management program are required to take three courses (9 credit hours) to build an engineering management foundation that includes topics in engineering quality management, systems improvement, engineering project management, intellectual property issues, and business laws. The three core courses are:

- EIN 5226 Total Quality Management For Engineers 3
- ESI 6455 Advanced Engineering Project Management 3
- LAW 5072 Business Law and Intellectual Property for Engineers and Entrepreneurs 3

Business Electives

Students in the program are required to take three courses (9 credit hours) to gain fundamental knowledge about management functions that includes topics in accounting, finance, organizational behavior, leadership, marketing, and operations management. The suggested list of courses is given below:

- ACG 6026 Accounting for Managers 3
- FIN 6406 Corporate Finance 3
- MAN 6209 Organization Design and Behavior 3
- MAR 6805 Marketing Management 3
- MAN 6830 Organization Information Systems 3
- MAN 6501 Operations Management 3
- EIN 5359 Industrial Financial Decisions 3
- MAN 6167 Leadership in a Global Environment 3

Engineering Tracks

Students in the Engineering Management program must choose an engineering track from any academic unit in the College of Engineering and Computing. Within a chosen track, students are required to take four courses (12 credit hours) that meet the program’s technical requirement. These engineering electives are designed to broaden and deepen the students’ understanding of engineering and technology development in a chosen track. Students should have a proper educational background in order to take elective courses. Additional tracks and elective courses may be available, subject to the approval of the Engineering Management program director.

Biomedical Engineering Track

Students in this track are required to take four courses from the following list. Additional courses may be selected with approval of the program director.

- BME 5005 Applied Biomedical Engineering Principles 3
- BME 5036 Biotransport Processes 3
- BME 5105 Intermediate Biomaterials Science 3
- BME 5316 Molecular Bioprocess Engineering 3
- BME 5340 Introduction to Cardiovascular Engineering 3
- BME 5560 Biomedical Engineering Optics 3
- BME 5573 Nanomedicine 3
- BME 5505C Engineering Foundations of Medical Imaging Instrument 3

Computer Engineering Track

Students in this track are required to take four courses from the following list. Additional courses may be selected with approval of the program director.

ACG 6026 Accounting for Managers 3
FIN 6406 Corporate Finance 3
MAN 6209 Organization Design and Behavior 3
MAR 6805 Marketing Management 3
MAN 6830 Organization Information Systems 3
MAN 6501 Operations Management 3
EIN 5359 Industrial Financial Decisions 3
MAN 6167 Leadership in a Global Environment 3
Computer Science Track
Students in this track are required to take four courses from the following list. Additional courses may be selected with approval of the program director.

EEL 5718 Computer Communication Engineering 3
EEL 5725 Hardware Description Languages (VHDL or Verilog) 3
EEL 5757 Real-Time DSP Implementations 3
EEL 6167 VLSI Design 3
EEL 6253 Computer Analysis of Power Systems 3
EEL 6505 Digital Signal Processing 3
EEL 6575 Data Communications Engineering 3
EEL 6681 Fuzzy System Design 3

Construction Management Track
Students in this track are required to take four courses from the following list. Additional courses may be selected with approval of the program director.

BCN 5716 Productivity in Construction 3
BCN 5626 Construction Cost Analysis & Control 3
BCN 5645 Construction Economic Analysis 3
BCN 5728 Principles of Construction Scheduling 3
BCN 5774 Topics in International Construction 3
BCN 6775 Decision & Risk Analysis in Construction 3
BCN 6916 Development in Construction Technology 3
CCE 5505 Computer Integrated Construction 3

Electrical Engineering Track
Students in this track are required to take four courses from the following list. Additional courses may be selected with approval of the program director.

EEL 5425 Introduction to Nanotechnology 3
EEL 5171 Advanced Systems Theory 3
EEL 5500 Digital Communication Systems I 3
EEL 5501 Digital Communication Systems II 3
EEL 6219 Electric Power Quality 3
EEL 6261 Power Systems Engineering 3
EEL 6443 Electro-Optical Devices and Systems 3
EEL 6505 Digital Signal Processing 3

Enterprise Systems Track
Students in this track are required to take four courses from the following list. Additional courses may be selected with approval of the program director.

EGN 5620 Enterprise Systems Configuration 3
EGN 5621 Enterprise Systems Collaboration 3
EGN 5622 Enterprise Systems Integration 3
EGN 5623 Enterprise Systems Optimization 3
EIN 5346 Logistics Engineering 3
EIN 6133 Enterprise Engineering 3

Environmental Engineering Track
Students in this track are required to take four courses from the following list with the approval of the Graduate Program Director and after meeting prerequisite requirements. Additional courses may be selected with approval of the program director.

ENV 5406 Water Treatment Systems and Design 3
ENV 5517 Design of Wastewater Treatment Plants 3
ENV 5666 Water Quality Management 3
CWR 5235 Open Channel Hydraulics 3
CWR 6125 Groundwater Hydrology 3
ENV 5104 Indoor Air Quality 3
ENV 5105 Air Quality Management 3
ENV 5347 Waste Incineration 3
ENV 5126 Particulate Air Pollution Control 3
ENV 5127 Gaseous Air Pollution Control 3
ENV 5356 Solid and Hazardous Waste 3
ENV 5027 Bioremediation Processes 3
ENV 5335 Advanced Hazardous Waste Treatment Processes 3
ENV 5008 Appropriate Technologies for Developing Countries 3
ENV5007 Environmental Planning 3
ENV 5519 Chemistry for Environmental Engineers 3
ENV 6045 Environmental Modeling 3
ENV 6070 Green Engineering 3
ENV 6614 Environmental Impact Assessment 3

Information Technology Track
Students in this track are required to take four courses from the following list. Additional courses may be selected with approval of the program director.

CIS 5027 Computer Systems Fundamentals 3
CIS 5372 Fundamentals of Computer Security 3
CEN 5087 Software and Data Modeling 3
COP 5725 Principles of Database Management Systems 3
TCN 5030 Computer Communications and Networking Technology 3
EGN 5620 Enterprise Systems Configuration 3
EGN 5621 Enterprise Systems Collaboration 3
EGN 5622 Enterprise Systems Integration 3
EGN 5623 Enterprise Systems Optimization 3
EIN 6117 Advanced Industrial Information Systems 3
ESI 5602 Engineering Data Representation and Modeling 3
ESI 6601 Data Warehousing and Mining 3
Logistics Engineering Track
Students in this track are required to take four courses from the following list. Additional courses may be selected with approval of the program director.

EIN 5346 Logistics Engineering 3
EIN 6133 Enterprise Engineering 3
EIN 6336 Advanced Production Planning and Control 3
EIN 6345 Inventory Control Systems 3
ESI 5522 Simulation Models of Engineering Systems 3
ESI 6316 Applications of OR in Manufacturing 3
ESI 6470 Stochastic Optimization 3

Mechanical Engineering Track
Students in this track are required to take four courses from the following list. Additional courses may be selected with approval of the program director.

EGM 5346 Computational Engineering Analysis 3
EGM 5354 Finite Element Methods Applications in ME 3
EGM 5615 Synthesis of Engineering Mechanics 3
EGM 6422 Advanced Computational Engineering Analysis 3
EML 5103 Intermediate Thermodynamics 3
EML 5152 Intermediate Heat Transfer 3
EML 5505 Smart Machine Design and Development 3
EML 5509 Mechanical Design Optimization 3
EML 5530 Intermediate CAD/CAE Systems 3
EML 5606C Advanced Refrigeration and AC Systems 3
EML 5709 Intermediate Fluid Mechanics 3
EML 6725 Computational Fluid Dynamics 3

Production and Manufacturing Track
Students in this track are required to take four courses from the following list. Additional courses may be selected with approval of the program director.

EGN 6436 Manufacturing Process Design 3
EGN 6437 Manufacturing Systems Design 3
EIN 5332 Quality Engineering 3
EIN 5367 Design of Production Systems 3
EIN 6336 Advanced Production Planning and Control 3
EIN 6345 Inventory Control Systems 3
EIN 6392 Product Design for Manufacturability and Automation 3

Risk and Disaster Management Track
Students in this track are required to take four courses from the following list. Additional courses may be selected with approval of the program director.

BCN 5588 Vulnerability Analysis 3
BCN 5589 Hazard Mitigation 3
ENV 6614 Environmental Risk Assessment 3
PHC 6251 Disaster and Emergency Epidemiology 3
MAN 6706 Crisis Management 3
MAP 6630 Numerical Analysis in Risk Analysis and Management 3
MAP 6635 Risk Analysis and Management I 3
MAP 6636 Risk Analysis and Management II 3

Structural/Wind/Construction Track
Students in this track are required to take four courses from the following four groups (one per group) with the approval of the Graduate Program Director and after meeting prerequisite requirements. Additional courses may be selected with approval of the program director.

Group 1
CCE 5035 Construction Engineering Management 3
CCE 5036 Advanced Project Planning for Civil Engineers 3

Group 2
GES 5715 Prestressed Concrete Design 3
GES 5606 Advanced Structural Steel Design 3
GES 6706 Advanced Reinforced Concrete Design 3
EGN 5439 Design of Tall Buildings 3

Group 3
EML 5103 Intermediate Thermodynamics 3
EML 5152 Intermediate Heat Transfer 3
EML 5505 Smart Machine Design and Development 3
EML 5509 Mechanical Design Optimization 3
EML 5530 Intermediate CAD/CAE Systems 3
EML 5606C Advanced Refrigeration and AC Systems 3
EML 5709 Intermediate Fluid Mechanics 3
EML 6725 Computational Fluid Dynamics 3

Systems Engineering Track
Students in this track are required to take four courses from the following list. Additional courses may be selected with approval of the program director.

EIN 5332 Quality Engineering 3
EIN 5346 Logistics Engineering 3
EIN 6133 Enterprise Engineering 3
EIN 6336 Advanced Production Planning and Control 3
EIN 6345 Inventory Control Systems 3
EIN 6357 Advanced Engineering Economy 3
EIN 6940 Industrial and Systems Engineering Internship 3
ESI 5522 Simulation Models of Engineering Systems 3
ESI 5602 Engineering Data Representation and Modeling 3
ESI 5603 Advanced Software Tools 3
ESI 6316 Applications of OR in Manufacturing 3
ESI 6440 Integer Programming 3
ESI 6470 Stochastic Optimization 3
ESI 6524 Advanced Industrial Systems Simulation 3
ESI 6546 Network Flow Analysis 3

Telecommunications Track
Students in this track are required to take four courses from the following list. Additional courses may be selected with approval of the program director.

TCN 5010 Telecommunications Technology and Applications 3
TCN 5030 Computer Communications and Networking Technologies 3
TCN 5060 Telecommunications Software and Methodologies 3
TCN 5640 Telecommunications Enterprise Planning and Strategy 3
TCN 6210 Telecommunications Network Analysis and Design 3
TCN 6430 Network Management and Control Standards 3
TCN 6450 Wireless Information Systems 3
TCN 6880 Telecommunications Public Policy Development and Standards 3
Transportation Engineering Track

Students in this track are required to take four courses from the following list. Additional courses may be selected with approval of the program director.

- TTE 5205 Advanced Highway Capacity Analysis 3
- TTE 5215 Fundamentals of Traffic Engineering 3
- TTE 5607 Transportation Demand Analysis 3
- TTE 5805 Advanced Geometric Design of Highways 3
- TTE 6257 Traffic Control Systems Design 3
- TTE 6506 Mass Transit Planning 3
- CGN 5320 GIS Applications in Civil and Environmental Engineering 3

Water Resources Engineering Track

Students in this track are required to take four courses from the following list with the approval of the Graduate Program Director and after meeting prerequisite requirements. Additional courses may be selected with approval of the program director.

- CWR 5140C Ecohydrology 3
- CWR 5235 Open Channel Hydraulics 3
- CWR 5251 Environmental Hydraulics 3
- CWR 5535C Advanced Modeling Applications in Water Resources Engineering 3
- CWR 6117 Stochastic Hydrology 3
- CWR 6125 Groundwater Hydrology 3
- CWR 6126 Advanced Groundwater Hydrology 3
- CWR 6236 Engineering Sediment Transport 3
- ENV 5666 Water Quality Management 3

Master's Project Option

Students in the Engineering Management graduate program may receive permission to conduct a master's project of three credit hours within their chosen track to complete the degree program. The master's project (EIN 6950) will replace one graduate elective course.

Grades and Credits

Students are required to maintain a GPA of 3.0. Courses with a grade below 'C' will not be counted toward the Master of Science degree in Engineering Management.

Transfer Credit

Students may receive permission to transfer up to a maximum of six semester credits provided that: (1) the courses were taken at the graduate level at an accredited college or university; (2) with a grade of 'B' or better; (3) the courses were judged relevant by the program director; (4) the credits were not used toward another degree; and (5) the credits will be no older than six years at the time of graduation. No more than 12 semester hours taken at FIU as a non-degree seeking student may be counted toward the Engineering Management graduate program.

Time Limit

All works applicable to the Master of Science degree in Engineering Management, including transfer credits, must be completed within six years of conferral of the degree.

Combined BS in Biomedical Engineering/MS in Engineering Management (BSBME/MSEM)

Students who pursue a BS degree and have completed 75–90 credits in the undergraduate program of Biomedical Engineering with an overall GPA of 3.2 or higher may, upon recommendation from three faculty members, apply to the department to enroll in the combined BSBME/MSEM program. Students must also submit an online application to the University Graduate School for admission to the MSEM program. In addition to the admission requirements of the MSEM program, students must meet all the admission requirements of the University Graduate School.

Students need only apply once to the combined degree program, but the application must be submitted to Graduate Admissions before the student starts the last 30 credits of the bachelor's degree program. A student admitted to the combined degree program will be considered to have undergraduate status until the student applies for graduation from their bachelor's degree program. Upon conferral of the bachelor's degree, the student will be granted graduate status and be eligible for graduate assistantships.

Students enrolled in the combined degree program could count up to three BME graduate courses for both the BSBME electives and the MSEM electives, for a total saving of 9 credit hours. The following is a list of eligible BME graduate courses:

- BME 5005 Applied Biomedical Engineering Principles 3
- BME 5036 Biotransport Processes 3
- BME 5105 Intermediate Biomaterials Science 3
- BME 5316 Molecular Bioprocess Engineering 3
- BME 5340 Introduction to Cardiovascular Engineering 3
- BME 5560 Biomedical Engineering Optics 3
- BME 5573 Nanomedicine 3

The combined BSBME/MSEM program has been designed to be a continuous program. During this combined BSBME/MSEM program, upon completion of all the requirements of the BSBME program, students will receive their BSBME degree. Students may elect to permanently leave the combined program and earn only the BSBME degree. Students who elect to leave the combined program and earn only the BS degree will have the same access requirements to regular graduate programs as any other student, but will not be able to use the 9 credit hours in both the BSBME and MSEM degrees.

For each of the graduate courses counted as credits for both BSBME and MSEM degrees, a minimum grade of "B" is required. Only graduate courses with formal lecture can be counted for both degrees. The students are responsible for confirming the eligibility of each course with their undergraduate advisors.

Students interested in the combined program should consult with their undergraduate advisor on their eligibility to the program. The student should also meet the MSEM Program Director to learn about the graduate program and available tracks/courses before completing the application form and submitting it to their undergraduate advisor. Final decision for admission to the MSEM program will be made by the University Graduate School upon recommendation by the Engineering Management
Final decision for admission to the MSEM program will be made by the University Graduate School upon recommendation by the Engineering Management program director. Applicants will be notified by the Engineering Management Program and the University Graduate School of the decision on their applications.

Combined BS in Computer Engineering/MS in Engineering Management (BScP/E/MSEM)

Students, who are pursuing a Bachelor of Science degree in Computer Engineering and have completed at least 75-90 credits with a minimum of a 3.3 overall GPA may, upon recommendation from three ECE faculty members, apply to enroll in the combined BScP/E/MSEM program. Students need only apply once to the combined degree program, but the application must be submitted to Graduate Admissions before the student starts the last 30 credits of the bachelor’s degree program. In addition to the admission requirements of the MSEM program, students must meet all the admission requirements of the University Graduate School.

Students enrolled in the combined degree program could count up to two Electrical Engineering graduate courses for both the BScP/E electives and the MSEM electives, for a total saving of 6 credit hours. A minimum grade of “B” is required graduate courses counted as credits for both BScP/E and MSEM degrees. Only 5000-level or higher courses may be applied toward both degrees. Only graduate courses with formal lecture can be counted for both degrees.

The combined BScP/E/MSEM program has been designed to be a continuous program. Students will receive their BScP/E degree upon completion of all the requirements of the BScP/E program. A student admitted to the combined degree program will be considered to have undergraduate status until the student applies for graduation from his/her bachelor’s degree program. Upon conferral of the bachelor’s degree, the student will be granted graduate status and be eligible for graduate assistantships.

Students may elect to permanently leave the combined program and earn only the BScP/E degree. Students who elect to leave the combined program and earn only the BS degree will have the same access requirements to regular graduate programs as any other student but will not be able to use the 6 credit hours in both the BScP/E and MSEM degrees.

Students interested in the combined program should consult with their undergraduate advisor on their eligibility to the program. The student should also meet the MSEM Program Director to learn about the graduate program and available tracks/courses before completing the application form and submitting it to their undergraduate advisor. Final decision for admission to the MSEM program will be made by the University Graduate School upon recommendation by the Engineering Management program director. Applicants will be notified by the Engineering Management Program and the University Graduate School of the decision on their applications.

Combined BS in Computer Science/MS in Engineering Management (BScS/MSEM)

Students who pursue a BS degree and are in their first semester of the senior year in Computer Science and have earned at least a 3.2 overall GPA may, upon recommendation from three faculty members, apply to the department to enroll in the combined BScS/MSEM program. Students must also submit an online application to the University Graduate School for admission to the MSEM program. In addition to the admission requirements of the MSEM program, students must meet all the admission requirements of the University Graduate School.

Students need only apply once to the combined degree program, but the application must be submitted to Graduate Admissions before the student starts the last 30 credits of the bachelor’s degree program. A student admitted to the combined degree program will be considered to have undergraduate status until the student applies for graduation from their bachelor’s degree program. Upon conferral of the bachelor’s degree, the student will be granted graduate status and be eligible for graduate assistantships.

Students enrolled in the combined degree program could count up to three Computer Science graduate courses toward satisfying both the BScS and the MSEM requirements, for a total saving of 9 credit hours. Students are required to take four courses from the following list. Additional courses may be selected with approval of the program director.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEN 5011</td>
<td>Advanced Software Engineering</td>
</tr>
<tr>
<td>COP 5725</td>
<td>Principles of Database Management</td>
</tr>
<tr>
<td>COP 5614</td>
<td>Operating Systems</td>
</tr>
<tr>
<td>COT 5420</td>
<td>Theory of Computation I</td>
</tr>
<tr>
<td>COT 5407</td>
<td>Introduction to Algorithms</td>
</tr>
</tbody>
</table>

The combined BScS/MSEM program has been designed to be a continuous program. During this combined BScS/MSEM program, upon completion of all the requirements of the BScS program, students will receive their BScS degree. Students may elect to permanently leave the combined program and earn only the BScS degree. Students who elect to leave the combined program will have the same access requirements to regular graduate programs as any other student, but will not be able to use the 9 credit hours in both the BScS and MSEM degrees.

For each of the graduate courses counted as credits for both BScS and MSEM degrees, a minimum grade of “B” is required. Only graduate courses with formal lecture can be counted for both degrees. The students are responsible for confirming the eligibility of each course with their undergraduate advisors.

Students interested in the combined program should consult with their undergraduate advisor on their eligibility to the program, preferably during their junior year, since appropriate planning of coursework is required in order to achieve the full nine-credit benefit. The student should also meet the MSEM Program Director to learn about the graduate program and available tracks/courses before completing the application form and submitting it to their undergraduate advisor. Final decision for admission to the MSEM program will be made by the University Graduate School upon recommendation by the Engineering Management program director. Applicants will be notified by the Engineering Management Program and the University Graduate School of the decision on their applications.
Combined BS in Electrical Engineering/MS in Engineering Management (BSEE/MSEM)

Students, who are pursuing a Bachelor of Science degree in Electrical Engineering and have completed at least 75-90 credits with a minimum of a 3.3 overall GPA may, upon recommendation from three ECE faculty members, apply to enroll in the combined BSEE/MSEM program. Students need only apply once to the combined degree program, but the application must be submitted to Graduate Admissions before the student starts the last 30 credits of the bachelor's degree program. In addition to the admission requirements of the MSEM program, students must meet all the admission requirements of the University Graduate School.

Students enrolled in the combined degree program could count up to two Electrical Engineering graduate courses for both the BSEE electives and the MSEM electives, for a total saving of 6 credit hours. A minimum grade of "B" is required graduate courses counted as credits for both BSEE and MSEM degrees. Only 5000-level or higher courses may be applied toward both degrees. Only graduate courses with formal lecture can be counted for both degrees.

The combined BSEE/MSEM program has been designed to be a continuous program. Students will receive their BSEE degree upon completion of all the requirements of the BSEE program. A student admitted to the combined degree program will be considered to have undergraduate status until the student applies for graduation from his/her bachelor's degree program. Upon conferral of the bachelor's degree, the student will be granted graduate status and be eligible for graduate assistantships.

Students may elect to permanently leave the combined program and earn only the BSEE degree. Students who elect to leave the combined program and earn only the BSEE degree will have the same access requirements to regular graduate programs as any other student but will not be able to use the 6 credit hours in both the BSEE and MSEM degrees.

Students interested in the combined program should consult with their undergraduate advisor on their eligibility to the program. The student should also meet the MSEM Program Director to learn about the graduate program and available tracks/courses before completing the application form and submitting it to their undergraduate advisor. Final decision for admission to the MSEM program will be made by the University Graduate School upon recommendation by the Engineering Management program director. Applicants will be notified by the Engineering Management Program and the University Graduate School of the decision on their applications.

Combined BS in Information Technology/MS in Engineering Management (BSIT/MSEM)

Students who pursue a BS degree and are in their first semester of the senior year in Information Technology and have earned at least a 3.2 overall GPA may, upon recommendation from three faculty members, apply to the department to enroll in the combined BSIT/MSEM program. Students must also submit an online application to the University Graduate School for admission to the MSEM program. In addition to the admission requirements of the MSEM program, students must meet all the admission requirements of the University Graduate School.

Students need only apply once to the combined degree program, but the application must be submitted to Graduate Admissions before the student starts the last 30 credits of the bachelor's degree program. A student admitted to the combined degree program will be considered to have undergraduate status until the student applies for graduation from their bachelor's degree program. Upon conferral of the bachelor's degree, the student will be granted graduate status and be eligible for graduate assistantships.

Students enrolled in the combined degree program could count up to three Management Electives toward their nine "interdisciplinary credits" in the BSIT degree program, for a total saving of 9 credit hours.

ACG 6026 Accounting for Managers
EIN 5359 Industrial Financial Decisions
FIN 6406 Corporate Finance
MAN 6167 Leadership in a Global Environment
MAN 6209 Organization Design and Behavior
MAN 6501 Operations Management
MAN 6830 Organization Information Systems
MAR 6805 Marketing Management

The combined BSIT/MSEM program has been designed to be a continuous program. During this combined BSIT/MSEM program, upon completion of all the requirements of the BSIT program, students will receive their BSIT degree. Students may elect to permanently leave the combined program and earn only the BSIT degree. Students who elect to leave the combined program and earn only the BSIT degree will have the same access requirements to regular graduate programs as any other student, but will not be able to use the 9 credit hours in both the BSIT and MSEM degrees.

For each of the graduate courses counted as credits for both BSIT and MSEM degrees, a minimum grade of "B" is required. Only graduate courses with formal lecture can be counted for both degrees. The students are responsible for confirming the eligibility of each course with their undergraduate advisors.

Students interested in the combined program should consult with their undergraduate advisor on their eligibility to the program, preferably during their junior year, since appropriate planning of coursework is required in order to achieve the full nine-credit benefit. The student should also meet the MSEM Program Director to learn about the graduate program and available tracks/courses before completing the application form and submitting it to their undergraduate advisor. Final decision for admission to the MSEM program will be made by the University Graduate School upon recommendation by the Engineering Management program director. Applicants will be notified by the Engineering Management Program and the University Graduate School of the decision on their applications.
Combined BS in Mechanical Engineering/MS in Engineering Management (BSME/MSM)

Students who pursue a BS degree and have completed 75–90 credits in the undergraduate program of Mechanical Engineering with an overall GPA of 3.2 or higher may, upon recommendation from three faculty members, apply to the department to enroll in the combined BSME/MSM program. Students must also submit an online application to the University Graduate School for admission to the MSEM program. In addition to the admission requirements of the MSEM program, students must meet all the admission requirements of the University Graduate School.

Students need only apply once to the combined degree program, but the application must be submitted to Graduate Admissions before the student starts the last 30 credits of the bachelor’s degree program. A student admitted to the combined degree program will be considered to have undergraduate status until the student applies for graduation from their bachelor’s degree program. Upon conferral of the bachelor’s degree, the student will be granted graduate status and be eligible for graduate assistantships.

Students enrolled in the combined degree program could count up to three Mechanical Engineering graduate courses for both the BSME electives and the MSEM electives, for a total saving of 9 credit hours. The following is a list of eligible Mechanical Engineering graduate courses:

- EGM 5346: Computational Engineering Analysis
- EGM 5354: Finite Element Method Applications in ME
- EGM 5615: Synthesis of Engineering Mechanics
- EML 5103: Intermediate Thermodynamics
- EML 5152: Intermediate Heat Transfer
- EML 5505: Smart Machine Design and Development
- EML 5509: Mechanical Design Optimization
- EML 5530: Intermediate CAD/CAE
- EML 5606C: Advanced Refrigeration and AC Systems
- EML 5709: Intermediate Fluid Mechanics

The combined BSME/MSEM program has been designed to be a continuous program. During this combined BSME/MSEM program, upon completion of all the requirements of the BSME program, students will receive their BSME degree. Students may elect to permanently leave the combined program and earn only the BSME degree. Students who elect to leave the combined program and earn only the BS degree will have the same access requirements to regular graduate programs as any other student, but will not be able to use the 9 credit hours in both the BSME and MSEM degrees.

For each of the graduate courses counted as credits for both BSME and MSEM degrees, a minimum grade of "B" is required. Only graduate courses with formal lecture can be counted for both degrees. The students are responsible for confirming the eligibility of each course with their undergraduate advisors.

Students interested in the combined program should consult with their undergraduate advisor on their eligibility to the program. The student should also meet the MSEM Program Director to learn about the graduate program and available tracks/courses before completing the application form and submitting it to their undergraduate advisor. Final decision for admission to the MSEM program will be made by the University Graduate School upon recommendation by the Engineering Management program director. Applicants will be notified by the Engineering Management Program and the University Graduate School of the decision on their applications.

Graduate Certificate in Engineering Management (GCEM)

This certificate program is designed for practicing engineers and graduate students in all engineering majors, who are interested in acquiring skills for managerial careers in the engineering and technology industries. The GCEM program is especially helpful for those engineers who seeking to transition into management and wish to acquire the necessary requisite knowledge and skills. More than a sequence of coursework, the certificate program also simulates a business environment where students learn and apply engineering tools, managerial theories, and best practices to design and operate industrial and engineering systems. Students in the program are expected to acquire contemporary engineering management theories and techniques.

Admission Requirements

A minimum undergraduate GPA of 2.75 is required for admission. International graduate student applicants whose native language is not English are required to submit a score for the Test of English as a Foreign Language (TOEFL) or for the International English Language Testing System (IELTS). A total score of 80 on the iBT TOEFL or 6.5 overall on the IELTS is required.

Certificate Requirements

All the credits earned in this Certificate program may be used in the Master of Science in Engineering Management (MSEM) degree program provided the student is admitted to the MSEM degree program prior to the completion of no more than 12 Graduate Certificate credits.

- EIN 5226: Total Quality Management for Engineers 3
- EIN 5359: Industrial Financial Decisions 3
- EIN 6133: Enterprise Engineering 3
- ESI 6455: Advanced Engineering Project Management 3
- LAW 5072: Business Law and Intellectual Property for Engineers and Entrepreneurs 3

Graduate Certificate in Enterprise Systems (GCES)

This certificate program is designed for those who are interested in acquiring expertise and skills in the growing discipline of Enterprise Systems (ES). ES software utilizes the computational power with massive data storage and transmission capabilities to support enterprise processes, information flows, reporting, and data analytics within and among complex organizations. Typical Enterprise Systems include Enterprise Resource Planning (ERP), Supply Chain Management (SCM), and Customer Relationship Management (CRM). The software architecture aiming at facilitating the flow of information
among all business functions inside the boundaries of the organization and to outside stakeholders. Built on a centralized database and business intelligence, ES aims to consolidate all business operations into a uniform, real-time, and enterprise-wide system environment.

The Graduate Certificate in Enterprise Systems (GCES) program combines the optimal design of enterprise structures and operations with SAP implementation. The Certificate program consists of five required graduate courses.

**Admission Requirements**
A minimum undergraduate GPA of 2.75 is required for admission. International graduate student applicants whose native language is not English are required to submit a score for the Test of English as a Foreign Language (TOEFL) or for the International English Language Testing System (IELTS). A total score of 80 on the TOEFL or 6.5 overall on the IELTS is required.

**Certificate Requirements**
Students must take at least 5 required courses and receive an average grade of “B” or higher. In addition, students who attain “B” or better in at least three courses will also earn a SAP certificate. All the credits earned in this Certificate program may be used in the Master of Science in Engineering Management (MSEM) degree program provided the student is admitted to the MSEM program.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIN 6133</td>
<td>Enterprise Engineering</td>
<td>3</td>
</tr>
<tr>
<td>EGN 5620</td>
<td>Enterprise Systems Configuration</td>
<td>3</td>
</tr>
<tr>
<td>EGN 5621</td>
<td>Enterprise Systems Collaboration</td>
<td>3</td>
</tr>
<tr>
<td>EGN 5622</td>
<td>Enterprise Systems Integration</td>
<td>3</td>
</tr>
<tr>
<td>EGN 5623</td>
<td>Enterprise Systems Optimization</td>
<td>3</td>
</tr>
</tbody>
</table>

**Course Descriptions**

**Description of Prefixes**
EGN-Engineering, General; EIN-Engineering, Industrial; ESI-Engineering Systems Industrial; F-Fall semester offering; S-Spring semester offering; SS-Summer semester offering.

**EGN 5435 Product Modeling** (3). Life cycle product data, geometry and form features, product information models and modeling techniques, product modeling systems, and product data standards. Prerequisites: EGN 3124 or equivalent.

**EGN 5620 Enterprise Systems Configuration** (3). Enterprise systems overview; major enterprise functions; standard operation procedures; system configuration and parameters; master data; user interfaces and reports; and hands-on experience. Prerequisite: Permission of the instructor.

**EGN 5621 Enterprise Systems Collaboration** (3). Collaborative engineering and environment; decision processes; changes management; virtual enterprise operation systems; and hands-on experience with a commercial enterprise operation system. Prerequisite: EGN 5622.

**EGN 5622 Enterprise Systems Integration** (3). Enterprise architectures; work flow modeling and design; systems integration methodology; vertical and horizontal integration; master data analysis and integration; and hands-on experience. Prerequisite: EGN 5620.

**EGN 5623 Enterprise Systems Optimization** (3). Supply networks overview; interactive supply network planning; optimal systems and process design; optimization techniques and heuristics; master and transaction data transfer; and hands-on experience. Prerequisite: EGN 5622.

**EGN 6436 Manufacturing Process Design** (3). Resources modeling, process plan modeling, and planning methodologies for process selection, operations selection, machining parameters selection, setup planning, and inspection planning. Prerequisite: EGN 5842.

**EGN 6437 Manufacturing Systems Design** (3). System design for production and process planning, resource management, material handling, process control, and quality control. Prerequisite: Permission of the instructor.

**EGN 6438 Manufacturing Engineering** (3). Manufacturing functions, product and process design, material processing and control, systems design and operations, resource and technology management, and analytical tools for manufacturing. Prerequisites: EIN 3390 or equivalent. (F)

**EGN 6971 Master’s Project** (1-3). Individual work culminating in a professional practice-oriented report suitable for the requirements of the Master of Science in Manufacturing Engineering program.

**EIN 5106 Regulatory Aspects of Engineering** (3). A survey of the legal and regulatory requirements encountered by engineers. Included will be OSH Act, NIOSH, ADA, EEOC, Worker’s Compensation and Product Liability.

**EIN 5226 Total Quality Management for Engineers** (3). Fundamentals of TQM and its historical development. Integration of QC and management tools, QFD, benchmarking, experimental design for scientific management. (F,S)

**EIN 5244 Cognitive Engineering** (3). Advanced topics in human factors and cognitive engineering. Theoretical aspects of applied situation awareness and decision making, and applications in a variety of engineering domains. Prerequisite: EIN 4243.

**EIN 5249 Occupational Biomechanics** (3). Study of the theoretical fundamentals for the mechanics of the body. The link system of the body and kinematic aspects of body movement including applications of biomechanics to work systems. Prerequisites: EIN 4314 Work Design and Industrial Ergonomics or equivalent. (S)

**EIN 5256 Usability Engineering** (3). The usability aspects of software systems design and testing. The theory of interface design for usability and the methods and techniques for designing and testing technology interfaces. Prerequisite: Permission of Instructor.

**EIN 5322 Engineering Management** (3). Organization of engineering systems including production and service organizations. Inputs of human skills, capital, technology, and managerial activities to produce useful products and services. (F,S)

**EIN 5332 Quality Engineering** (3). This course examines quality control from an engineering standpoint. It covers
ways to meet the challenge of designing high-quality products and processes at low cost. Prerequisites: EIN 3331 or equivalent. (S)

EIN 5346 Logistics Engineering (3). Concepts and tools for effective design and management of supply chain systems. Includes logistics strategies, inventory management, customer service, supply chain integration and logistics network design. Prerequisite: Permission of the instructor.

EIN 5359 Industrial Financial Decisions (3). The use of financial techniques and data in planning, controlling and coordinating industrial activities. This course will familiarize the student with accounting concepts and analytical methods. Prerequisite: EGN 3613. (SS)

EIN 5367 Design of Production Systems (3). The design of an industrial enterprise including feasibility, plant layout, equipment specifications, auxiliary services, economics and scheduling. Prerequisite: EIN 3365.

EIN 5605 Robotic Assembly Cell (3). Concepts of robot manipulation and sensing, part design for robotic assembly, planning manipulator trajectories, machine vision, robot programming language, cell control, and material transfer. Prerequisite: EIN 3600. (S)

EIN 6105 Technology Policies and Strategies (3). Strategies and policies for managing all aspects of technology. Includes value chain integration, intellectual property, and internal processes and systems.

EIN 6117 Advanced Industrial Information Systems (3). Review of the fundamental and theoretical foundation of industrial information systems. Application of the system design process and information system concepts to develop integrated engineering systems. (F,S)

EIN 6131 e-Systems Design (3). The study and application of engineering analysis and design methods for Internet-based systems. The integration of Internet technologies and applications into engineering information systems. Prerequisites: ESI 5602, EIN 6117.

EIN 6132 Collaborative Engineering (3). Product data management, visualization, collaboration, collaborative product commerce, document management, component supplier management, configuration management, enterprise application integration. Prerequisite: Permission of the instructor.

EIN 6133 Enterprise Engineering (3). Enterprise processes and functions, enterprise engineering methodology and techniques, enterprise scalability, systems and vertical integration, systems design and implementation. Prerequisite: Permission of Instructor.

EIN 6160 Management of Innovation and Technology (3). The course provides an integrated view of management of technology. The combination of theory and practice addresses the challenges of globalization, time compression, and technology integration. Prerequisite: Permission of instructor.

EIN 6246 Advanced Human-Machine Interaction Design (3). The application of human factors analysis and design methods to complex system interaction. Interface design for technological systems in workplace and consumer domains. Prerequisites: EIN 4243 or equivalent.

EIN 6248 Advance Ergonomics (3). Analysis of human factors in the design of engineering systems, with emphasis on the interphase of man-machine-media and human limitations in relation to equipment design and work environments. Prerequisites: EIN 4314, EIN 4243, and PCB 3702 or equivalent. (F)

EIN 6258 Ergonomic Design of Aerospace Systems (3). Application of ergonomic criteria in design of civil and military aircraft cockpits and control systems. Ergonomic consideration in design of outer space vehicles, stations, and systems. Prerequisite: EIN 6248.

EIN 6259 Usability Engineering in E-commerce (3). This advanced course applies usability engineering theories and methods to models of e-commerce. Usability models are presented and evaluated using case studies. Prerequisite: EIN 5256.

EIN 6319 Advanced Work Design (3). Study of the various human physiologic systems and their responses as it relates to occupational work including endurance, fatigue, recovery, and energy cost of work. Prerequisite: EIN 6248. (S)

EIN 6324 Technology Entrepreneurship (3). Entrepreneurial process, evaluation of technology, startup operations and strategy, business plans and venture capital, intellectual property and rights, growth and technology management.

EIN 6325 Business Plan Development (3). This course deals with the critical decisions and action steps that entrepreneurs must make in both planning and executing a new venture. It also covers how to develop an effective written plan. Prerequisite: Permission of advisor.

EIN 6327 Entrepreneurship and New Venture Initiation (3). It covers critical factors of initiating new ventures: entrepreneurial networks, venture creation, strategies, evaluation, financing, legal considerations, market strategies, and feasibility analysis.

EIN 6329 Advanced Engineering Business Plan Development (3). This course takes students through the process of writing a plan for a new business venture through to implementation. Heavy emphasis placed on research and case analysis. Prerequisites: EIN 6324 or MAN 6805.

EIN 6336 Advanced Production Planning and Control (3). Analytical and algorithmic planning methodologies, planning and scheduling technologies, sequencing rules, control strategies, and line balancing methods. Prerequisite: EIN 4334.

EIN 6345 Inventory Control Systems (3). Design of non-traditional inventory control systems. Development of several inventory system models. Exploration of methods of collecting appropriate demand and cost data for effective systems analysis. Prerequisite: ESI 3314.

EIN 6357 Advanced Engineering Economy (3). Review of engineering economy and the evaluation of advanced manufacturing systems. Evaluation of alternative capital investments considering income taxes, depreciation, inflation, risk and uncertainty. Prerequisite: EGN 3613. (SS)

EIN 6392 Product Design for Manufacturability and Automation (3). Overview and integration of the design-
material-manufacture process. Design considerations for manufacturability, assembly, and economical production. Concurrent engineering systems. Prerequisite: EIN 4395. (S)

EIN 6393 Design and Implementation of Discrete Manufacturing Systems (3). Methodology and techniques for design, planning and implementation of discrete production systems including process/machine selections, material handling and inspection technologies, cell control, etc. Prerequisites: Graduate or seniors with EIN 3365, EIN 3390, and ESI 3523 or equivalent.

EIN 6397 Advanced Topics in Manufacturing Automation (3). Overview of manufacturing systems; evolution of controls and AI, material handling, automation clamps, jigs, and fixtures, cutting sensors, machine vision and autonomous manufacturing. Prerequisites: EIN 6392 and EIN 6398.

EIN 6398 Advanced Manufacturing Process Engineering (3). Non-traditional manufacturing processes. Tool selection, jig and fixture design, material handling, tolerance and dimensioning. Product assembly engineering economics, and manufacturing process planning. Prerequisite: EIN 3390. (F)

EIN 6603 Applied AI/Expert Systems in Industrial Engineering (3). Application of artificial intelligence and expert systems as engineering tools. Exploring the use of PCs and symbolic machine with various AI/Expert Systems software. Several projects are required. Prerequisite: CAP 5680.

EIN 6606 Robotic Systems (3). Basic robotic system principles, functional requirements of robotic systems, simulation of system preliminary design, and physical experimentation of robotic systems.

EIN 6908 Independent Study (1-3). Individual supervised study by a faculty. A study plan and a final report are work required. Prerequisite: Departmental approval.

EIN 6910 Supervised Research (1-9). Advanced research credits under the supervision of the dissertation advisor.

EIN 6916 Master's Project (1-3). Individual work culminating in a professional practice-oriented report suitable for the requirements of the MSIE degree project option. Only three credits are applicable towards the degree. Prerequisite: Departmental approval.

EIN 6932 Graduate Seminar (0). An examination of recent technical findings in selected areas of concern. Emphasis is placed on presentations (oral and written), research activities, readings and discussions among participants. (F,S)

EIN 6936 Design of Industrial Engineering Systems (3). Overview of systems theories. Systems design process including: Problem definition, analysis, generation of alternatives, systems evaluation, selection of preferred system, and implementation. Prerequisites: EIN 6345, ESI 6316, and ESI 6524.

EIN 6940 Industrial and Systems Engineering Internship (1-3). To provide graduate students with work experience under approved industrial supervision. Prerequisite: Permission of department chairperson.

EIN 6950 Engineering Management Masters Project (1-3). Individual work culminating in a professional practice-oriented report suitable for the requirements of the Master of Science in Engineering Management program. Prerequisite: Permission for the advisor.

EIN 6971 Master's Thesis (1-3). The students following the thesis option should work on his/her thesis through this course. (F,S,SS)

EIN 7980 Ph.D. Dissertation (1-12). Doctoral research leading to Ph.D. dissertation in Industrial and Systems Engineering. Prerequisites: Doctoral Candidacy and permission of Graduate Director.

ESI 5456 Productivity Management in the Global Organization (3). Analysis of productivity management strategies. Major issues in performance and productivity management, domestic and global outsourcing, international labor standards and trade policies. Prerequisites: EIN 4214 or equivalent.

ESI 5522 Simulation Models of Engineering Systems (3). Simulation Methodology; design and implementation of models of engineering systems using computer software; case studies. Prerequisite: STA 3033 or EIN 3235 or equivalent and COP 3175 or equivalent.

ESI 5602 Engineering Data Representation and Modeling (3). The course will cover the life cycle of designing, developing, and implementing engineering database systems by applying the IDEFx methodology. Prerequisite: Permission of Instructor.


ESI 6316 Applications of OR in Manufacturing (3). Overview of OR techniques. Manufacturing system and product selection. Shop loading, resource allocation, production scheduling, job sequencing, and plant layout problems. System performance evaluation. Prerequisite: ESI 3314. (F)

ESI 6319 Operations Research and Information Technology (3). Principles and paradigms for the design and implementation of OR models, which may be integrated into an organization’s existing information system and technologies. Prerequisite: ESI 6316.

ESI 6440 Integer Programming (3). Formulating and solving decision-making problems with discrete decision variables. Methods to solve large-scale integer/mixed-integer models. Prerequisite: ESI 6316.

ESI 6455 Advanced Engineering Project Management (3). This course covers entire phases of project management including selection, planning, budgeting, scheduling, monitoring, and control. It focuses on the management of engineering projects through case studies and independent research assignment. Prerequisite: Permission of the instructor. (S,SS)

ESI 6460 Methods for Algorithm Development for Industrial Engineering Applications (3). Methods for algorithm development for Industrial Engineering applications, with emphasis on powerful optimization techniques and analysis tools. Prerequisites: ESI 3314 or permission of instructor.
ESI 6470 Stochastic Optimization (3). Formulating and solving decision-making models with uncertain data. Exact and approximation techniques for large-scale stochastic models. Prerequisite: ESI 6316.

ESI 6524 Advanced Industrial Systems Simulation (3). Advanced simulation techniques with a focus on practical systems modeling using several user-oriented simulation languages. Projects involving design of high-performance simulation programs are required. Prerequisite: ESI 5522 or equivalent. (S)

ESI 6528 Advanced Topics in Simulation Modeling (3). An examination of the role of artificial intelligence, object oriented programming, and databases as enabling technologies in the simulation modeling process. Review of the literature and case studies. Prerequisites: ESI 6524 or equivalent.

ESI 6546 Network Flow Analysis (3). Deterministic and stochastic network flow analysis; minimal cost flow, shortest route, max-flow, and out-of-kilter algorithms; constrained network analysis; and stochastic queuing networks. Prerequisite: ESI 3314.

ESI 6547 Stochastic Models of Industrial Systems (3). Applications of models from gaming, decisions analysis, queueing, inventory and scheduling to assess the performance level of industrial systems operating under random conditions. Prerequisite: ESI 6316.

ESI 6601 Data Warehousing and Mining (3). Knowledge discovery for effective design of data storage. Discussion of the difficulties associated with data warehousing and mining. Literature review and case studies.